CSI papers published: Exoplanet reflected light spectroscopy with PICASO

Exoplanet reflected light spectroscopy with PICASO by N.E. Batalha, CSI member Nikole Lewis, and colleagues; email: nikole.lewis@cornell.edu

Here we present the first open-source radiative transfer model for computing the reflected light of exoplanets at any phase geometry, called PICASO: Planetary Intensity Code for Atmospheric Scattering Observations. This code, written in Python, has heritage from a decades old, well-known Fortran model used for several studies of planetary objects within the Solar System and beyond. We have adopted it to include several methodologies for computing both direct and diffuse scattering phase functions, and have added several updates including the ability to compute Raman scattering spectral features. Here we benchmark PICASO against two independent codes and discuss the degree to which the model is sensitive to a user's specification for various phase functions. Then, we conduct a full information content study of the model across a wide parameter space in temperature, cloud profile, SNR and resolving power.

Nikole Lewis, Astronomy & Planetary Science

Klarman Hall at sunset

Tweets from CSInst

is an annual twitter competition hosted by to determine the most popular exoplanet of the year.… https://t.co/IgYMfPedoH
1 day 16 hours ago
We endorse , the 1st close-in planet found around a white dwarf, for ! To learn more about the… https://t.co/tX63gdObmU
1 day 16 hours ago
RT : So proud to hear the 100th episode of ! Thank you for bringing our to the local… https://t.co/naRcsnpdSB
2 days 12 hours ago
RT : Learn skills ! is offered online & open to everyone! Build a comm strategy,create… https://t.co/2vOy0egObM
2 days 14 hours ago
RT : Is there beyond ? "I think the numbers are forever in our favor," says of &… https://t.co/5VOEFUwRav
3 days 20 hours ago
Happy Thanksgiving to our American colleagues & followers. This year’s parade in NYC included a https://t.co/AMzaF6lKIo
3 days 21 hours ago