CSI papers published: ultra-hot Jupiter WASP-121b

An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope

An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope by T.M. Evans, CSI Member Nikole Lewis, and colleagues, email: nikole.lewis@cornell.edu

We present an atmospheric transmission spectrum for the ultra-hot Jupiter WASP-121b, measured using the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST). Across the 0.47 1 µm wavelength range, the data imply an atmospheric opacity comparable to - and in some spectroscopic channels exceeding - that previously measured at near-infrared wavelengths (1.15-1.65 µm).  Wavelength-dependent variations in the opacity rule out a gray cloud deck at a confidence level of 3.8σ and may instead be explained by VO spectral bands. We find a cloud-free model assuming chemical equilibrium for a temperature of 1500K and metal enrichment of 10-30x solar matches these data well. Using a free-chemistry retrieval analysis, we estimate a VO abundance of -6.6+0.2/-0.3 dex. We find no no evidence for TiO and place a 3σ upper limit of -7.9 dex on its abundance, suggesting TiO may have condensed from the gas phase at the day-night limb. The opacity rises steeply at the shortest wavelengths, increasing by approximately ve pressure scale heights from 0.47 to 0.3 µm in wavelength. If this feature is caused by Rayleigh scattering due to uniformly-distributed aerosols, it would imply an unphysically high temperature of 6810±1530 K. One alternative explanation for the short-wavelength rise is absorption due to SH (mercapto radical), which has been predicted as an important product of non-equilibrium chemistry in hot Jupiter atmospheres. Irrespective of the identity of the NUV absorber, it likely captures a significant amount of incident stellar radiation at low pressures, thus playing a significant role in the overall energy budget, thermal structure, and circulation of the atmosphere.

Nikole Lewis, Astronomy & Planetary Science

Klarman Hall at sunset

Tweets from CSInst

The paper can be found here: https://t.co/fRbeqtmShM 6/6
1 hour 30 min ago
“From the exoplanets’ point-of-view, we are the aliens.” Dr. Lisa Kaltenegger (, Director,… https://t.co/fTOgBqCgvg
1 hour 30 min ago
“One might imagine that worlds beyond Earth that have already detected us, are making the same plans for our planet… https://t.co/lFv2BTM1se
1 hour 30 min ago
“Our analysis shows that even the closest stars generally spend more than 1,000 years at a vantage point where they… https://t.co/Y9h4tFH6q8
1 hour 30 min ago
"Scientists at Cornell and the American Museum of Natural History have identified 2,034 nearby star-systems – withi… https://t.co/q1eBKlLukt
1 hour 30 min ago
' Exoplanets get a cosmic front-row seat to find backlit Earth ' New research by Dr. Lisa Kaltenegger (… https://t.co/w39bjVPKge
1 hour 30 min ago