CSI papers published: Atmospheres and UV Environments of Earth-like Planets

Atmospheres and UV Environments of Earth-like Planets throughout Post-main-sequence Evolution by CSI members Thea Kozakis and Lisa Kaltenegger; email: tk543@cornell.edu

During the post-main-sequence (post-MS) phase of stellar evolution, the orbital distance of the habitable zone (HZ), which allows for liquid surface water on terrestrial planets, moves out past the system's original frost line, providing an opportunity for outer planetary system surface habitability. We use a 1D coupled climate/photochemistry code to study the impact of the stellar environment on the planetary atmospheres of Earth-like planets/moons throughout its time in the post-MS HZ. We also explore the ground UV environments of such planets/moons and compare them to Earth's. We model the evolution of star–planet systems with host stars ranging from 1.0 to 3.5 M⊙ throughout the post-MS, calculating stellar mass loss and its effects on planetary orbital evolution and atmospheric erosion. The maximum amount of time a rocky planet can spend continuously in the evolving post-MS HZ ranges between 56 and 257 Myr for our grid stars. Thus, during the post-MS evolution of their host star, subsurface life on cold planets and moons could become remotely detectable once the initially frozen surface melts. Frozen planets or moons, like Europa in our solar system, experience a relatively stable environment on the horizontal branch of their host star's evolution for millions of years.

Thea Kozakis, Astronomy and Planetary Sciences

Lisa Kaltenegger, Astronomy & Planetary Science

More news

bacteria Vibrio natriegens
The laboratory of Buz Barstow has engineered the the bacteria Vibrio natriegens, shown here, to conduct low-cost science without expensive incubators, shakers or freezers. Credit: Bryce Brownfield/Provided

Low-cost microbe can speed biological discovery

View all news
Top