CSI papers published: Exoplanet reflected light spectroscopy with PICASO

Exoplanet reflected light spectroscopy with PICASO by N.E. Batalha, CSI member Nikole Lewis, and colleagues; email: nikole.lewis@cornell.edu

Here we present the first open-source radiative transfer model for computing the reflected light of exoplanets at any phase geometry, called PICASO: Planetary Intensity Code for Atmospheric Scattering Observations. This code, written in Python, has heritage from a decades old, well-known Fortran model used for several studies of planetary objects within the Solar System and beyond. We have adopted it to include several methodologies for computing both direct and diffuse scattering phase functions, and have added several updates including the ability to compute Raman scattering spectral features. Here we benchmark PICASO against two independent codes and discuss the degree to which the model is sensitive to a user's specification for various phase functions. Then, we conduct a full information content study of the model across a wide parameter space in temperature, cloud profile, SNR and resolving power.

Nikole Lewis, Astronomy & Planetary Science

More news

Lisa Kaltenegger, founding director of the Carl Sagan Institute
Lisa Kaltenegger, founding director of the Carl Sagan Institute at Cornell University. “I think a lot of people might not be so aware of where we are right now, and that they are living in this momentous time in history,” she said. “We can all be a part of it.” Heather Ainsworth for The New York Times

She Dreams of Pink Planets and Alien Dinosaurs

View all news
Top